Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(14): 5818-5824, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35802861

RESUMO

Single-walled carbon nanotubes (SWCNT) have long attracted attention due to their distinct physical properties, depending on their chiral structures (chiralities). Clarifying their growth mechanism is important toward perfect chirality-controlled bulk synthesis. Although a correlation between the chirality distribution and the carbon atom configuration at an open tube edge has been predicted theoretically, lack of sufficient statistical data on metallic and semiconducting SWCNTs prohibited its verification. Here, we report statistical verification of the chirality distribution of 413 as-grown individual air-suspended SWCNTs with a length of over 20 µm using broadband Rayleigh spectroscopy. After excluding the impact of the difference in the number of possible SWCNT structures per chiral angle interval, the abundance profile with chiral angle exhibits an increasing trend with a distinct anomaly at a chiral angle of approximately 20°. These results are well explained considering the growth rate depending on armchair-shaped site configurations at the catalyst-nanotube interface.

2.
Nat Commun ; 13(1): 3713, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764634

RESUMO

Perfluorinated aromatic compounds, the so-called perfluoroarenes, are widely used in materials science owing to their high electron affinity and characteristic intermolecular interactions. However, methods to synthesize highly strained perfluoroarenes are limited, which greatly limits their structural diversity. Herein, we report the synthesis and isolation of perfluorocycloparaphenylenes (PFCPPs) as a class of ring-shaped perfluoroarenes. Using macrocyclic nickel complexes, we succeeded in synthesizing PF[n]CPPs (n = 10, 12, 14, 16) in one-pot without noble metals. The molecular structures of PF[n]CPPs (n = 10, 12, 14) were determined by X-ray crystallography to confirm their tubular alignment. Photophysical and electrochemical measurements revealed that PF[n]CPPs (n = 10, 12, 14) exhibited wide HOMO-LUMO gaps, high reduction potentials, and strong phosphorescence at low temperature. PFCPPs are not only useful as electron-accepting organic materials but can also be used for accelerating the creation of topologically unique molecular nanocarbon materials.

3.
ACS Nano ; 16(5): 8205-8212, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35481755

RESUMO

Controlling the direction of exciton-energy flow in two-dimensional (2D) semiconductors is crucial for developing future high-speed optoelectronic devices using excitons as the information carriers. However, intrinsic exciton diffusion in conventional 2D semiconductors is omnidirectional, and efficient exciton-energy transport in a specific direction is difficult to achieve. Here we demonstrate directional exciton-energy transport across the interface in tungsten diselenide (WSe2)-molybdenum diselenide (MoSe2) lateral heterostructures. Unidirectional transport is spontaneously driven by the built-in asymmetry of the exciton-energy landscape with respect to the heterojunction interface. At excitation positions close to the interface, the exciton photoluminescence (PL) intensity was substantially decreased in the WSe2 region and enhanced in the MoSe2 region. In PL excitation spectroscopy, it was confirmed that the observed phenomenon arises from lateral exciton-energy transport from WSe2 to MoSe2. This directional exciton-energy flow in lateral 2D heterostructures can be exploited in future optoelectronic devices.

4.
Opt Lett ; 46(13): 3021-3024, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197369

RESUMO

Spectral control of thermal radiation is an essential strategy for highly efficient and functional utilization of thermal radiation energy. Among the various proposed methods, quantum confinement in low-dimensional materials is promising because of its inherent ability to emit narrowband thermal radiation. Here, we theoretically investigate thermal radiation from one-dimensional (1D) semiconductors characterized by the strong quantum correlation effect due to the Coulomb interaction. We derive a simple and useful formula for the emissivity, which is then used to calculate the thermal radiation spectrum of semiconducting single-walled carbon nanotubes as a representative of 1D semiconductors. The calculations show that the exciton state, which is an electron-hole pair mutually bound by the Coulomb interaction, causes enhancement of the radiation spectrum peak and significant narrowing of its linewidth in the near-infrared wavelength range. The theory developed here will be a firm foundation for exciton thermal radiation in 1D semiconductors, which is expected to lead to new energy harvesting technologies.

5.
J Am Chem Soc ; 143(14): 5465-5469, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33759524

RESUMO

The layered structures of graphite and related nanographene molecules play key roles in their physical and electronic functions. However, the stacking modes of negatively curved nanographenes remain unclear, owing to the lack of suitable nanographene molecules. Herein, we report the synthesis and one-dimensional supramolecular self-assembly of negatively curved nanographenes without any assembly-assisting substituents. This curved nanographene self-assembles in various organic solvents and acts as an efficient gelator. The formation of nanofibers was confirmed by microscopic measurements, and an unprecedented double-helix assembly by continuous π-π stacking was uncovered by three-dimensional electron crystallography. This work not only reports the discovery of an all-sp2-carbon supramolecular π-organogelator with negative curvature but also demonstrates the power of three-dimensional electron crystallography for the structural determination of submicrometer-sized molecular alignment.

6.
Adv Mater ; 32(50): e2003501, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33118213

RESUMO

Optically generated excitonic states (excitons and trions) in transition metal dichalcogenides are highly sensitive to the electronic and magnetic properties of the materials underneath. Modulation and control of the excitonic states in a novel van der Waals (vdW) heterostructure of monolayer MoSe2 on double-layered perovskite Mn oxide ((La0.8 Nd0.2 )1.2 Sr1.8 Mn2 O7 ) is demonstrated, wherein the Mn oxide transforms from a paramagnetic insulator to a ferromagnetic metal. A discontinuous change in the exciton photoluminescence intensity via dielectric screening is observed. Further, a relatively high trion intensity is discovered due to the charge transfer from metallic Mn oxide under the Curie temperature. Moreover, the vdW heterostructures with an ultrathin h-BN spacer layer demonstrate enhanced valley splitting and polarization of excitonic states due to the proximity effect of the ferromagnetic spins of Mn oxide. The controllable h-BN thickness in vdW heterostructures reveals a several-nanometer-long scale of charge transfer as well as a magnetic proximity effect. The vdW heterostructure allows modulation and control of the excitonic states via dielectric screening, charge carriers, and magnetic spins.

7.
Phys Rev Lett ; 124(10): 106101, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216387

RESUMO

We report the first experimental observation of a strong-coupling effect in a one-dimensional moiré superlattice. We study one-dimensional double-wall carbon nanotubes (DWCNTs) in which van der Waals-coupled two single nanotubes form a one-dimensional moiré superlattice. We experimentally combine Rayleigh scattering spectroscopy and electron beam diffraction on the same individual DWCNTs to probe the optical transitions of the structure-identified DWCNTs in the visible spectral range. Among more than 30 structure-identified DWCNTs examined, we experimentally observed and identified a drastic change of the optical transition spectrum in a DWCNT with chirality (12,11)@(17,16). The origin of the marked change is attributed to the strong intertube coupling effect in the moiré superlattice formed by two nearly armchair nanotubes. Our numerical simulation is consistent with the experimental findings.

8.
Science ; 365(6450): 272-276, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31320538

RESUMO

The generation of topologically complex nanocarbons can spur developments in science and technology. However, conventional synthetic routes to interlocked molecules require heteroatoms. We report the synthesis of catenanes and a molecular trefoil knot consisting solely of para-connected benzene rings. Characteristic fluorescence of a heterocatenane associated with fast energy transfer between two rings was observed, and the topological chirality of the all-benzene knot was confirmed by enantiomer separation and circular dichroism spectroscopy. The seemingly rigid all-benzene knot has rapid vortex-like motion in solution even at -95°C, resulting in averaged nuclear magnetic resonance signals for all hydrogen atoms. This interesting dynamic behavior of the knot was theoretically predicted and could stimulate deeper understanding and applications of these previously untapped classes of topological molecular nanocarbons.

9.
Nat Commun ; 10(1): 3040, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292451

RESUMO

Single-walled carbon nanotubes theoretically possess ultimate intrinsic tensile strengths in the 100-200 GPa range, among the highest in existing materials. However, all of the experimentally reported values are considerably lower and exhibit a considerable degree of scatter, with the lack of structural information inhibiting constraints on their associated mechanisms. Here, we report the first experimental measurements of the ultimate tensile strengths of individual structure-defined, single-walled carbon nanotubes. The strength depends on the chiral structure of the nanotube, with small-diameter, near-armchair nanotubes exhibiting the highest tensile strengths. This observed structural dependence is comprehensively understood via the intrinsic structure-dependent inter-atomic stress, with its concentration at structural defects inevitably existing in real nanotubes. These findings highlight the target nanotube structures that should be synthesized when attempting to fabricate the strongest materials.

10.
Nat Commun ; 9(1): 3144, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087347

RESUMO

Thermal radiation is the most primitive light emission phenomenon of materials. Broadband radiation from red-hot materials is well known as the kick-starter phenomenon of modern quantum physics in the early twentieth century; even nowadays, its artificial control plays a central role in modern science and technology. Herein, we report the fundamental thermal radiation properties of intrinsic one-dimensional semiconductors and metals, which have not been elucidated because of significant technical challenges. We observed narrow-band near-infrared radiation from semiconducting single-walled carbon nanotubes at 1000-2000 K in contrast to its broadband metallic counterpart. We confirm that the ultra-narrow-band radiation is enabled by the thermal generation of excitons that are hydrogen-like neutral exotic atoms comprising mutually bound electrons and holes. Our findings uncover the robust quantum correlations in intrinsic one-dimensional semiconductors even at 2000 K; additionally, the findings provide an opportunity for excitonic optothermal engineering toward the realization of efficient thermophotovoltaic energy harvesting.

11.
J Am Chem Soc ; 140(31): 10054-10059, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30032597

RESUMO

The synthesis and X-ray crystal structure of the first member of the carbon nanobelt family is reported. [12]Carbon nanobelt ([12]CNB) was originally obtained from a nickel-mediated reductive coupling reaction of a dodecabrominated macrocyclic precursor, albeit only in 1% yield. The present article reports on the development of this synthetic strategy and its extension to the preparation of the [16] and [24]CNB analogues. In particular, our extensive investigations on the final belt-forming, nickel-mediated reaction led to the development of a new ligand system that provides [12]CNB in up to 7% yield, contributing to the commercialization of [12]CNB. The belt structures of [12], [16], and [24]CNB were characterized by NMR, UV-vis, and Raman spectroscopy as well as mass spectrometry and X-ray crystallography. The fluorescence of the CNBs in solution displayed a remarkable dependence on the ring size, ranging from a broad red emission ([12]CNB) to a narrow-band blue emission ([24]CNB), while both features are observed for [16]CNB.

12.
Sci Rep ; 8(1): 2333, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402969

RESUMO

Precise fabrication of molecular assemblies on a solid surface has long been of central interest in surface science. Their perfectly oriented growth only along a desired in-plane direction, however, remains a challenge, because of the thermodynamical equivalence of multiple axis directions on a solid-surface lattice. Here we demonstrate the successful fabrication of an in-plane, unidirectional molecular assembly on graphene. Our methodology relies on nanomechanical symmetry breaking effects under atomic force microscopy tip scanning, which has never been used in molecular alignment. Individual one-dimensional (1D) molecular assemblies were aligned along a selected symmetry axis of the graphene lattice under finely-tuned scanning conditions after removing initially-adsorbed molecules. Experimental statistics and computational simulations suggest that the anisotropic tip scanning locally breaks the directional equivalence of the graphene surface, which enables nucleation of the unidirectional 1D assemblies. Our findings will open new opportunities in the molecular alignment control on various atomically flat surfaces.

13.
Angew Chem Int Ed Engl ; 57(11): 2874-2878, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29380493

RESUMO

Nanographene, a small piece of graphene, has attracted unprecedented interest across diverse scientific disciplines particularly in organic electronics. The biological applications of nanographenes, such as bioimaging, cancer therapies and drug delivery, provide significant opportunities for breakthroughs in the field. However, the intrinsic aggregation behavior and low solubility of nanographenes, which stem from their flat structures, hamper their development for bioapplications. Herein, we report a water-soluble warped nanographene (WNG) that can be easily synthesized by sequential regioselective C-H borylation and cross-coupling reactions of the saddle-shaped WNG core structure. The saddle-shaped structure and hydrophilic tetraethylene glycol chains impart high water solubility to the WNG. The water-soluble WNG possesses a range of promising properties including good photostability and low cytotoxicity. Moreover, the water-soluble WNG was successfully internalized into HeLa cells and promoted photoinduced cell death.


Assuntos
Grafite/química , Grafite/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Água/química , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células HeLa , Humanos , Nanopartículas/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Solubilidade
14.
Angew Chem Int Ed Engl ; 56(37): 11196-11202, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28585773

RESUMO

Numerous otherwise difficult applications have been realized with materials, the chemical/physical properties of which can be controlled by external stimuli such as heat, pressure, photo-irradiation, and voltage bias. However, the complexity of design and the lack of easy-to-conduct synthetic methods make the creation of on-demand stimuli responsive materials a formidable task. Here we report an electric-stimuli-responsive multifunctional material, [10]CPP-I: crystalline assembly of a hydrocarbon nanoring ([10]cycloparaphenylene: [10]CPP) as an "electro-responsive porous host" and iodine as a "potentially functional molecule". Through applying electric stimulus, [10]CPP-I turned to exhibit two attractive properties: electronic conductivity and white light emission. We revealed that electric stimuli trigger the cascade formation of polyiodide chains inside the [10]CPP assembly through charge transfer, leading to the emergence of these properties. This "responsive porous host" approach is expected to be applicable for different stimuli, and opens the path for devising a generic strategy to the development of stimuli-responsive materials.

15.
Science ; 356(6334): 172-175, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28408599

RESUMO

The synthesis of a carbon nanobelt, comprising a closed loop of fully fused edge-sharing benzene rings, has been an elusive goal in organic chemistry for more than 60 years. Here we report the synthesis of one such compound through iterative Wittig reactions followed by a nickel-mediated aryl-aryl coupling reaction. The cylindrical shape of its belt structure was confirmed by x-ray crystallography, and its fundamental optoelectronic properties were elucidated by ultraviolet-visible absorption, fluorescence, and Raman spectroscopic studies, as well as theoretical calculations. This molecule could potentially serve as a seed for the preparation of structurally well-defined carbon nanotubes.

16.
Chem Asian J ; 12(2): 233-238, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27860278

RESUMO

Unsymmetrical cyanine dyes, such as thiazole orange, are useful for the detection of nucleic acids with fluorescence because they dramatically enhance the fluorescence upon binding to nucleic acids. Herein, we synthesized a series of unsymmetrical cyanine dyes and evaluated their fluorescence properties. A systematic structure-property relationship study has revealed that the dialkylamino group at the 2-position of quinoline in a series of unsymmetrical cyanine dyes plays a critical role in the fluorescence enhancement. Four newly designed unsymmetrical cyanine dyes showed negligible intrinsic fluorescence in the free state and strong fluorescence upon binding to double-stranded DNA (dsDNA) with a quantum yield of 0.53 to 0.90, which is 2 to 3 times higher than previous unsymmetrical cyanine dyes. A detailed analysis of the fluorescence lifetime revealed that the dialkylamino group at the 2-position of quinoline suppressed nonradiative decay in favor of increased fluorescence quantum yield. Moreover, these newly developed dyes were able to stain the nucleus specifically in fixed HeLa cells examined by using a confocal laser-scanning microscope.


Assuntos
Carbocianinas/química , Sondas de DNA/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Limite de Detecção , Microscopia Confocal , Estrutura Molecular , Imagens de Fantasmas , Quinolinas/química
17.
J Am Chem Soc ; 138(34): 11001-8, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27486790

RESUMO

Organic nanotubes (ONTs) are tubular nanostructures composed of small molecules or macromolecules that have found various applications including ion sensor/channels, gas absorption, and photovoltaics. While most ONTs are constructed by self-assembly processes based on weak noncovalent interactions, this unique property gives rise to the inherent instability of their tubular structures. Herein, we report a simple "helix-to-tube" strategy to construct robust, covalent ONTs from easily accessible poly(m-phenylene diethynylene)s (poly-PDEs) possessing chiral amide side chains that can adopt a helical conformation through hydrogen-bonding interactions. The helically folded poly-PDEs subsequently undergo light-induced cross-linking at longitudinally aligned 1,3-butadiyne moieties across the whole helix to form covalent tubes (ONTs) both in solution and solid phases. The structures of poly-PDEs and covalent ONTs were characterized by spectroscopic analyses, diffraction analysis, and microscopic analyses. We envisage that this simple yet powerful "helix-to-tube" strategy will generate a range of ONT-based materials by introducing functional moieties into a monomer.

18.
J Phys Chem Lett ; 6(8): 1327-32, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-26263131

RESUMO

Exciton decay dynamics in chemically treated PbS quantum-dot (QD) films have been studied using femtosecond transient-absorption (TA) spectroscopy. In photoconductive QD films, a decay component with a lifetime of a few nanoseconds appeared in the TA signals because of exciton dissociation under weak excitation. Increasing excitation fluence resulted in additional fast-decay components corresponding to the lifetimes of multiple excitons, which decreased with increasing photoconductivity of the closely packed QD films. Auger recombination in photoexcited QDs was suppressed in highly photoconductive films. Our findings clearly show that the carrier transfer between the QDs dominates the lifetimes of single and multiple excitons.

19.
Angew Chem Int Ed Engl ; 54(12): 3707-11, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25693784

RESUMO

The first cycloparaphenylene (CPP)-based ionic donor-acceptor supramolecule Li(+)@C60⊂[10]CPP⋅X(-) has been synthesized. X-ray crystallography not only confirmed the molecular structure of Li(+)@C60⊂[10]CPP⋅X(-) but also uncovered the formation of a unique ionic crystal. The strong charge-transfer interaction between [10]CPP and Li(+)@C60, which was confirmed by electrochemical measurement and spectroscopic analyses, caused significant delocalization of the positive charge across the entire complex.


Assuntos
Cicloparafinas/química , Fulerenos/química , Lítio/química , Cristalografia por Raios X , Técnicas Eletroquímicas , Íons/química , Conformação Molecular , Espectrofotometria Ultravioleta
20.
Opt Express ; 21(25): 31179-88, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514692

RESUMO

We report the spatial and temporal dynamics of the photo-induced phase in the iron (II) spin crossover complex Fe(ptz)(6)(BF(4))(2) studied by image measurement under steady light irradiation and transient absorption measurement. The dynamic factors are derived from the spatial and temporal fluctuation of the image in the steady state under light irradiation between 65 and 100 K. The dynamic factors clearly indicate that the fluctuation has a resonant frequency that strongly depends on the temperature, and is proportional to the relaxation rate of the photo-induced phase. This oscillation of the speckle pattern under steady light irradiation is ascribed to the nonlinear interaction between the spin state and the lattice volume at the surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...